machine-learning-notes
  • 封面
  • 目录
  • 前言
  • 个人前言
  • 机器学习前言
    • 什么是机器学习和模式识别
    • 机器学习的应用
    • 机器学习的流程
    • 不同的机器学习算法对相同数据预测效果不同
    • 快速入门机器学习
    • 机器学习需要参考哪些书
    • 机器学习的学习路径
    • 深度学习的学习路径
    • 互联网机器学习特定岗位所需技能
  • 机器学习面试
  • 数学基础
  • 微积分
    • 泰勒展开
    • e的直观认识
    • 傅里叶变换
    • 希尔伯特空间
  • 线性代数
    • 范数
    • 矩阵求导
    • 特征值
    • 奇异值分解
  • 概率与信息论
    • 综述概率论基本定义
    • 概率论与贝叶斯先验
    • 正态分布
    • 贝叶斯概率
    • 概率符号说明
    • 共轭先验
    • 信息论
  • 数值计算与优化
    • 最小二乘法
    • 等式约束的拉格朗日乘子法
    • 凸优化
      • 凸集和凸函数
      • 凸优化问题
  • 梯度下降算法
    • 随机梯度下降SGD
    • 动量法Momentum
    • 牛顿动量Nesterov
    • AdaGrad
    • RMSprop
    • Adadelta
    • Adam
    • Nadam
    • AMSGrad
    • AdasMax
  • 概率图模型
    • 概率图模型概论
    • 概率图简介
  • 编程基础
  • linux
    • linux常用命令
    • shell
      • 输入输出重定向
  • python
    • python简介
    • python语法
      • 基础语法
      • 数据结构
      • 过程控制
      • 函数
      • 类和对象
      • 文件操作
      • 正则表达式
    • python库
      • numpy
      • pandas
      • scipy
      • matplotlib
      • scikit-learn
    • python应用
      • 排序算法
  • 数据结构与算法
    • 数据结构
    • 算法思想
      • 排序
        • 堆排序
        • 归并排序
        • 快速排序
      • 递归
    • 剑指offer
      • 链表
      • 二叉树
      • 数组
      • 字符串
      • 栈和队列
      • 递归
      • 动态规划
      • 其他
    • leetcode
    • 编程语言
      • c++
  • Hadoop
    • Hadoop简介
    • MapReduce
  • Hive
  • Spark
  • TensorFlow
    • TensorFlow1.0
      • TensorFlow基础
      • TensorFlow基础概念解析
      • TensorFlow机器学习基础
      • Tensorflow分布式架构
    • TensorFlow2.0
  • PyTorch
  • 机器学习
  • 机器学习概论
  • 特征工程
  • 感知机
  • k近邻
  • 朴素贝叶斯
  • 线性模型
    • 最大熵模型
    • 指数族分布与广义线性模型
    • 线性回归
      • Ridge回归(岭回归)
      • Lasso回归
    • Logistic回归-对数几率回归
  • 决策树
  • 支持向量机
    • 线性可分支持向量机与硬间隔最大化
    • 线性支持向量机与软间隔最大化
    • 非线性支持向量机与核函数
    • 序列最小最优化算法SMO
    • SVM总结
  • 集成学习
    • Bagging
      • 随机森林
    • Boosting
      • AdaBoost
      • GradientBoosting
        • GBDT
        • XGBoost
          • XGBoost理论
          • XGBoost实践
    • Stacking
  • 降维
    • PCA主成分分析
    • 流形学习
  • EM算法
  • HMM隐马尔科夫模型
  • CRF条件随机场
  • 聚类
    • k均值聚类
    • 高斯混合模型
  • 主题模型
    • LDA隐狄利克雷分布
  • 知识点
    • 损失函数
    • 负采样
  • 机器学习算法总结
  • 深度学习
  • 深度学习概论
  • ANN人工神经网络
  • 知识点
    • Batch Normalization
  • CNN卷积神经网络
  • 深度学习优化算法
  • RNN循环神经网络
  • LSTM长短期记忆网络
  • GRU门控循环单元
  • GNN图神经网络
    • GNN图神经网络综述
    • GCN图卷积网络
      • GCN图卷积网络初步理解
      • GCN图卷积网络的numpy简单实现
      • GCN图卷积网络本质理解
      • GCN图卷积网络全面理解
      • SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS ICLR2017
  • 神经网络架构搜索
    • Weight-Agnostic-Neural-Networks Google2019
  • 强化学习
  • 强化学习概论
  • 马尔科夫决策过程
  • 动态规划
  • 无模型方法一:蒙特卡洛
  • 无模型方法二:时间差分
  • 无模型方法三:多步自举
  • 函数近似和深度网络
  • 策略梯度算法
  • 深度强化学习
  • 基于模型的强化学习
  • 强化学习前景
  • 自然语言处理
  • 自然语言处理概论
  • 自然语言
  • 语言模型和中文分词
  • word2vec
    • word2vec概述
    • word2vec算法原理
    • word2vec源码分析
    • word2vec实践
  • Seq2Seq模型和Attention机制
  • Self-Attention和Transformer
  • 知识图谱
  • 推荐系统
  • 推荐系统概论
  • 基础知识
  • 进阶知识
    • 机器学习
      • Factorization Machines ICDM2010
    • embedding
      • Network Embedding
        • LINE: Large-scale Information Network Embedding
    • 深度学习
      • DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017
      • DSSM: Learning Deep Structured Semantic Models for Web Search using Clickthrough Data CIKM2013
    • 图卷积网络
      • Graph Convolutional Neural Networks for Web-Scale Recommender Systems KDD2018
    • 强化学习
      • DRN基于深度强化学习的新闻推荐模型
  • 业界应用
    • YouTube
      • Deep Neural Networks for YouTube Recommendations RecSys2016
    • Alibaba
      • Learning Tree-based Deep Model for Recommender Systems KDD2018
      • Deep Interest Network for Click-Through Rate Prediction KDD2018
      • DSIN:Deep Session Interest Network for Click-Through Rate Prediction IJCAI2019
Powered by GitBook
On this page
  • embedding
  • Embedding方法的学习路径
  • 第一部分 Word2vec基础
  • 第二部分 Word2vec的衍生及应用
  • 第三部分 Graph Embedding
  • Network_Embedding
  • LINE
  • 论文
  • 参考资料

Was this helpful?

  1. 进阶知识

embedding

PreviousFactorization Machines ICDM2010NextNetwork Embedding

Last updated 5 years ago

Was this helpful?

embedding

  • Word2vec基础

  • Word2vec的衍生及应用

Embedding方法的学习路径

这篇文章来自中的。

这里是「王喆的机器学习笔记」的第十篇文章,今天我们不分析论文,而是总结一下Embedding方法的学习路径,这也是我三四年前从接触word2vec,到在推荐系统中应用Embedding,再到现在逐渐从传统的sequence embedding过渡到graph embedding的过程,因此该论文列表在应用方面会对推荐系统、计算广告方面有所偏向。

第一部分 Word2vec基础

1.

Google的Tomas Mikolov提出word2vec的两篇文章之一,这篇文章更具有综述性质,列举了NNLM、RNNLM等诸多词向量模型,但最重要的还是提出了CBOW和Skip-gram两种word2vec的模型结构。虽然词向量的研究早已有之,但不得不说还是Google的word2vec的提出让词向量重归主流,拉开了整个embedding技术发展的序幕。

2.

Tomas Mikolov的另一篇word2vec奠基性的文章。相比上一篇的综述,本文更详细的阐述了Skip-gram模型的细节,包括模型的具体形式和 Hierarchical Softmax和 Negative Sampling两种可行的训练方法。

虽然Mikolov的两篇代表作标志的word2vec的诞生,但其中忽略了大量技术细节,如果希望完全读懂word2vec的原理和实现方法,比如词向量具体如何抽取,具体的训练过程等,强烈建议大家阅读UMich Xin Rong博士的这篇针对word2vec的解释性文章。惋惜的是Xin Rong博士在完成这篇文章后的第二年就由于飞机事故逝世,在此也致敬并缅怀一下Xin Rong博士。

第二部分 Word2vec的衍生及应用

这篇论文是微软将word2vec应用于推荐领域的一篇实用性很强的文章。该文的方法简单易用,可以说极大拓展了word2vec的应用范围,使其从NLP领域直接扩展到推荐、广告、搜索等任何可以生成sequence的领域。

Airbnb的这篇论文是KDD 2018的best paper,在工程领域的影响力很大,也已经有很多人对其进行了解读。简单来说,Airbnb对其用户和房源进行embedding之后,将其应用于搜索推荐系统,获得了实效性和准确度的较大提升。文中的重点在于embedding方法与业务模式的结合,可以说是一篇应用word2vec思想于公司业务的典范。

第三部分 Graph Embedding

基于word2vec的一系列embedding方法主要是基于序列进行embedding,在当前商品、行为、用户等实体之间的关系越来越复杂化、网络化的趋势下,原有sequence embedding方法的表达能力受限,因此Graph Embedding方法的研究和应用成为了当前的趋势。

以随机游走的方式从网络中生成序列,进而转换成传统word2vec的方法生成Embedding。这篇论文可以视为Graph Embedding的baseline方法,用极小的代价完成从word2vec到graph embedding的转换和工程尝试。

相比DeepWalk纯粹随机游走的序列生成方式,LINE可以应用于有向图、无向图以及边有权重的网络,并通过将一阶、二阶的邻近关系引入目标函数,能够使最终学出的node embedding的分布更为均衡平滑,避免DeepWalk容易使node embedding聚集的情况发生。

node2vec这篇文章还是对DeepWalk随机游走方式的改进。为了使最终的embedding结果能够表达网络局部周边结构和整体结构,其游走方式结合了深度优先搜索和广度优先搜索。

相比于node2vec对游走方式的改进,SDNE模型主要从目标函数的设计上解决embedding网络的局部结构和全局结构的问题。而相比LINE分开学习局部结构和全局结构的做法,SDNE一次性的进行了整体的优化,更有利于获取整体最优的embedding。

阿里巴巴在KDD 2018上发表的这篇论文是对Graph Embedding非常成功的应用。从中可以非常明显的看出从一个原型模型出发,在实践中逐渐改造,最终实现其工程目标的过程。这个原型模型就是上面提到的DeepWalk,阿里通过引入side information解决embedding问题非常棘手的冷启动问题,并针对不同side information进行了进一步的改造形成了最终的解决方案EGES(Enhanced Graph Embedding with Side Information)。

这里是「王喆的机器学习笔记」 ,关于Embedding的这十篇论文包括了从基础理论、模型改造与进阶、模型应用等几个方面的内容,还是比较全面的,希望能帮助你成为相关方向的专家。但一个人的视野毕竟有局限性,希望大家能够反馈给我其他embedding相关的著名文章,我可以进行补充和替换。

Network_Embedding

什么时候更新graph embedding的文章啊,最近在做这一块,很期待 还是找几篇论文看看吧 deepwalk note2vec line 都不难实现

LINE

论文

Applying word2vec to Recommenders and Advertising

参考资料

"Embedding方法的学习路径"一节参考了此知乎专栏文章。

3.

4.

5.

6.

7.

8.

9.

10.

注:由于上面十篇论文都是我之前整理的paper list里面的内容,所以没有再引用原文链接,希望大家见谅。想偷懒的同学也可以star或者fork我的github paper list:

LINE的介绍见:

[Word2Vec] Word2vec Parameter Learning Explained (UMich 2016)
[Item2Vec] Item2Vec-Neural Item Embedding for Collaborative Filtering (Microsoft 2016)
[Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
[DeepWalk] DeepWalk- Online Learning of Social Representations (SBU 2014)
Graph embedding: 从Word2vec到DeepWalk
[LINE] LINE - Large-scale Information Network Embedding (MSRA 2015)
[Node2vec] Node2vec - Scalable Feature Learning for Networks (Stanford 2016)
[SDNE] Structural Deep Network Embedding (THU 2016)
[Alibaba Embedding] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (Alibaba 2018)
wzhe06/Reco-papers
深度学习中不得不学的Graph Embedding方法
网络表示学习综述:一文理解Network Embedding
关于Network embedding的一些笔记(内含数据集)
LINE: Large-scale Information Network Embedding
《Applying word2vec to Recommenders and Advertising》
Embedding从入门到专家必读的十篇论文-知乎王喆
返回顶层目录
返回上层目录
王喆的机器学习笔记
《Embedding从入门到专家必读的十篇论文》
[Word2Vec] Efficient Estimation of Word Representations in Vector Space (Google 2013)
[Word2Vec] Distributed Representations of Words and Phrases and their Compositionality (Google 2013)
Embedding方法的学习路径
NetworkEmbedding
LINE: Large-scale Information Network Embedding